If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7y+3y^2=20
We move all terms to the left:
7y+3y^2-(20)=0
a = 3; b = 7; c = -20;
Δ = b2-4ac
Δ = 72-4·3·(-20)
Δ = 289
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{289}=17$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-17}{2*3}=\frac{-24}{6} =-4 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+17}{2*3}=\frac{10}{6} =1+2/3 $
| (x-8)-1=0 | | 3-4x=18+1x | | 393.70=240+0.53x | | G(x)=14•2x | | 5y=(9y-4) | | -x+2.5x=3+1.5x | | -7g+8g–-15=5 | | x+x+x+10+5=180 | | 11u=5u+30 | | 6(3x-7)-5=6(4-4)+61 | | -3c=-1.4 | | |16x+20|=8 | | -1=5+3(7x-2) | | 4/3x=-18 | | 28-xx=10 | | 10q=5+6q−1 | | 350-(x/2)=-200+5x | | 1/5x+3=2 | | x^2-3x-1=-3 | | 24÷rr=6 | | 9+5b=6(-8+4b) | | (y-3)²=25 | | 1/5(a+5)=1/3(5-a) | | 10x=4x+78 | | (X-4)+(2x+5)=(4x-8) | | 4^(3x+2)=16 | | -3(1-3x)=2x=0 | | 6x-6/9=2x+16/12 | | -3/11=5-h+1.4 | | -(10x-(18x+4))=(7x+2) | | 165=50+(25+6)w | | x^2-156x-182=0 |